Advanced Data Science Professional (ADSP)


Have a question about the course?
Chat with an Education Officer or Email:

Select Your Preferred Batch Below:


  • Duration: 4 Day (Onsite) / 24 Hours (Online via Zoom)
  • Certification: Participants will receive a Certificate of Competency upon successfully completing the course and passing the examination
  • Who Should Attend: Professionals or Anyone interested in pursuing a career as a data scientist and use data to understand the world, uncover insights, and make better decisions

Course Objective

Acquire advanced knowledge on how to use Data Science with Python Programming to uncover business insights and trend.

Learn how to leverage on the power of Python Programming to deploy sophisticated statistical algorithms and models to advance Data Science, Artificial Intelligence / Machine Learning capabilities in any industry verticals.


No pre-requisite. Advanced Data Science Professional is suitable for everyone.


Participants are required to attempt an examination upon completion of course. This exam tests a candidate’s knowledge and skills related to Data Science and Python Programming based on the syllabus covered

Participants are expected to score a minimum of 70% to pass the examination

Module 1
Introduction to Data Science

Topics Covered

  • What is Data Science
  • Data Science Vs. Analytics
  • What is Data warehouse
  • Online Analytical Processing (OLAP)
  • MIS Reporting
  • Data Science and its Industry Relevance
  • Problems and Objectives in Different Industries
  • How to Harness the power of Data Science?
  • ELT vs ETL

Module 2
Deep Dive into Python Programming

Topics Covered

  • Python Editors & IDE
  • Custom Environment Settings
  • Basic Rules in Python
  • Most Common Packages / Libraries in Python (NumPy, SciPy, scikit-learn, Pandas, Matplotlib, etc)
  • Tuples, Lists, Dictionaries)
  • List and Dictionary Comprehensions
  • Variable & Value Labels –  Date & Time Values
  • Basic Operations – Mathematical – string – date
  • Reading and writing data
  • Simple plotting/Control flow/Debugging/Code profiling

Module 3
Importing / Exporting Data with Python

Topics Covered

  • Importing Data into from Various sources
  • Database Input (Connecting to database)
  • Viewing Data objects – sub setting, methods
  • Exporting Data to various formats

Module 4
Data Cleansing with Python

Topics Covered

  • Cleaning of Data with Python
  • Steps to Data Manipulation
  • Python Tools for Data manipulation
  • User Defined Functions in Python
  • Stripping out extraneous information
  • Normalization of Data and Data Formatting
  • Important Python Packages e.g.Pandas, Numpy etc)

Module 5
Data Visualization with Python

Topics Covered

  • Exploratory Data Analysis
  • Descriptive Statistics, Frequency Tables and Summarization
  • Univariate Analysis (Distribution of data & Graphical Analysis)
  • Bivariate Analysis(Cross Tabs, Distributions & Relationships, Graphical Analysis)
  • Creating Graphs
  • Important Packages for Exploratory Analysis(NumPy Arrays, Matplotlib, Pandas and scipy.stats etc)

Module 6
Statistics Fundamentals

Topics Covered

  • Basic Statistics – Measures of Central Tendencies and Variance
  • Building blocks (Probability Distributions, Normal distribution, Central Limit Theorem)
  • Inferential Statistics (Sampling, Concept of Hypothesis Testing)
  • Statistical Methods: Z/t-tests (One sample, independent, paired), ANOVA, Correlation and Chi-square
  • Statistical Methods: ANOVA
  • Statistical Methods: Correlation and Chi-square

Module 7
Introduction to Machine Learning

Topics Covered

  • Statistical Learning vs Machine Learning
  • Iteration and Evaluation
  • Supervised Learning vs Unsupervised Learning
  • Predictive Modelling – Data Pre-processing, Sampling, Model Building, Validation
  • Concept of Overfitting and Under fitting (Bias-Variance Trade off) & Performance Metrics
  • Cross ValidationTrain & Test, Bootstrapping, K-Fold validation etc

Module 8
Understanding Predictive Analytics

Topics Covered

  • Introduction to Predictive Modelling
  • Types of Business Problems
  • Mapping of Techniques
  • Linear Regression
  • Logistic Regression
  • Segmentation – Cluster Analysis (K-Means / DBSCAN)
  • Decision Trees (CHAID/CART/CD 5.0)
  • Time Series Forecasting

Module 9
Understanding A/B Testing Concepts

Topics Covered

  • Introduction to A/B Testing
  • Measuring Conversion for A/B Testing/li>
  • T-Test and P-Value
  • Measuring T-Statistics and P-Values using Python
  • A/B Test Gotchas
  • Novelty Effects, Seasonal Effects, and Selection of Bias
  • Data Pollution

Advanced Data Science Professional (ADSP) involves rigorous usage of real-time case studies, hands-on exercises and group discussions

Some Reasons Why Learners Choose CASUGOL

  • International Certification Body

  • Presence in 38 Countries

  • Developed by Industry Experts

  • More than 42,000 professionals passed through our education system

  • Flexible program design for all individuals

  • Learn from internationally renowned leading industry experts, academics, and researchers

  • Support for participants during and after training

  • Enhance competency of workforce and improve individual career prospect

  • Customization of programs for specific industry, organization, government agencies, statutory boards

  • Learn in a highly interactive, supportive and encouraging environment

  • Regular invitation to attend courses / workshops / seminars / events at complimentary rate

Certificate Verification

All certificates issued by CASUGOL are to individuals who have successfully completed CASUGOL Certification Programs / Executive Workshops and have fulfilled all requirements by demonstrating proficiency in applying the knowledge and skills acquired.

Click below to verify certificate

Individual or Self-Sponsored Learners

  • STEP ONE: Select your preferred batch / category above

  • STEP TWO: Click on Add to Cart

  • STEP THREE: In the pop-up page, click on View Cart

  • STEP FOUR: In the Cart page, click on Proceed to Checkout

  • STEP FIVE: In the Checkout page, complete the Billing Details and click on Place Order

For corporate-sponsored participants, batch registration, or any questions on the course
Chat with an Education Officer